Refine Your Search

Topic

Author

Search Results

Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Designing a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1763
The Purdue University EcoMakers team has completed its first year of the EcoCAR 2 Competition, in which the team has designed a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle that meets the performance requirements of a mid-size sedan for the US market, maintaining capability, utility and consumer satisfaction while minimizing emissions, energy consumption and petroleum use. The team is utilizing a 1.7L 14 CI engine utilizing B20 (20% biodiesel, 80% diesel), a 16.2 kW-hr A123 battery pack, and a Magna E-Drive motor to power the front and rear wheels. This will allow the vehicle to have a charge-depleting range of 75 miles. The first year was focused on the simulation of the vehicle, in which the team completed the controls, packaging and integration, and electrical plans for the vehicle to be used and implemented in years two and three of the competition.
Journal Article

Gerotor Pumps for Automotive Drivetrain Applications: A Multi Domain Simulation Approach

2011-09-13
2011-01-2272
This paper presents a simulation model for the analysis of internal gear ring pumps. The model follows a multi domain simulation approach comprising sub-models for parametric geometry generation, fluid dynamic simulation, numerical calculation of characteristic geometry data and CAD/FEM integration. The sub-models are interacting in different domains and relevant design and simulation parameters are accessible in a central, easy to handle graphical user interface. The potentials of the described tool are represented by simulation results for both steady state and transient pump operating conditions and by their correlation with measured data. Although the presented approach is suitable to all applications of gear ring pumps, a particular focus is given to hydraulic actuation systems used in automotive drivetrain applications.
Journal Article

Multi-objective Optimization Tool for Noise Reduction in Axial Piston Machines

2008-10-07
2008-01-2723
Noise generation in axial piston machines can be attributed to two main sources; fluid borne and structure borne. Any attempt towards noise reduction in axial piston machines should focus on simultaneous reduction of these two sources. A multi-parameter multi-objective optimization approach to design valve plates to reduce both sources of noise for pumps which operate in a wide range of operating conditions has been detailed in a previous work (Seeniraj and Ivantysynova, 2008). The focus of this paper is to explain the background and to demonstrate the functionality and usefulness of the methodology for pump design.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

A Novel Suspended Liner Test Apparatus for Friction and Side Force Measurement with Corresponding Modeling

2006-11-13
2006-32-0041
An experimental apparatus and a numerical model have been designed and developed to examine the lubrication condition and frictional losses at the piston and cylinder interface. The experimental apparatus utilizes components from a single cylinder, ten horsepower engine in a novel suspended liner arrangement. The test rig has been specifically designed to reduce the number of operating variables while utilizing actual components and geometry. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with experimental measurements and provide further insight into the sources of frictional losses. The results demonstrate the effects of speed and viscosity on the overall friction losses at the piston and cylinder liner interface. Comparisons between the experimental and analytical results show good agreement.
Technical Paper

Contribution of Sound to Perception of CVT Performance

2006-04-03
2006-01-0813
Three experiments examined the contribution of sound to the perception of performance using audio recordings made on a test track with a vehicle equipped with a continuously variable transmission (CVT) performing four different maneuvers with four transmission settings. Subjects rated the recordings based on their perceptions of power & performance, pleasantness, smoothness, and loudness. On the track, the low calibration setting (including a flat ratio schedule) had been rated higher for power & performance than the high calibration setting (including a rising ratio schedule). In Experiment 1, where subjects were unaware of the maneuver performed, there was no advantage for the low calibration setting; in Experiment 2, where subjects were aware of the maneuver, the power & performance ratings were opposite to those obtained on the test track. In Experiment 3, drivers of performance cars rated the recordings as more pleasant and smoother than did drivers of other vehicles.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

Dead Pedal and the Perception of Performance of a Continuously Variable Transmission

2005-04-11
2005-01-1596
The flat ratio schedule that maximizes the performance advantages of a CVT may also be a source of consumer resistance. A previous investigation of consumer perception did obtain maximum engine power and pickup ratings using the flat-ratio schedule, but some data were missing due to traffic conditions on public roads. This paper is a report of an experiment conducted at the Dearborn Proving Ground to confirm the flat-ratio-schedule advantage for engine power and pickup ratings, and to investigate further the effects of varying Dead Pedal. Driver ratings of engine power and pickup replicated the earlier findings, and an overall advantage of low Dead Pedal was found for ratings of engine power and pickup and for transmission smoothness.
Technical Paper

A Wall-Modified Flamelet Model for Diesel Combustion

2004-03-08
2004-01-0103
In this paper, a wall-modified interactive flamelet model is developed for improving the modeling of Diesel combustion. The objective is to include the effects of wall heat loss on the transient flame structure. The essential idea is to compute several flamelets with several representative enthalpy defects which account for wall heat loss. Then, the averaged flamelet profile can be obtained through a linear fit between the flamelets according to the enthalpy defect of the local gas which results from the wall heat loss. The enthalpy defect is estimated as the difference between the enthalpy in a flamelet without wall heat loss, which would correspond to the enthalpy in the gas without wall heat loss, and the gas with wall heat loss. The improved model is applied to model combustion in a Diesel engine. In the application, two flamelets, one without wall heat loss and one with wall heat loss, are considered.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

2003-03-03
2003-01-0220
In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
Technical Paper

An Experimentally Validated Physical Model of a High-Performance Mono-Tube Damper

2002-12-02
2002-01-3337
A mathematical model of a gas-charged mono-tube racing damper is presented. The model includes bleed orifice, piston leakage, and shim stack flows. It also includes models of the floating piston and the stiffness characteristics of the shim stacks. The model is validated with experimental tests on an Ohlins WCJ 22/6 damper and shown to be accurate. The model is exercised to show the effects of tuning on damper performance. The important results of the exercise are 1) the pressure variation on the compression side of the piston is insignificant relative to that on the rebound side because of the gas charge, 2) valve shim stiffness can be successfully modeled using stacked thin circular plates, 3) bleed orifice settings dominate the low speed regime, and 4) shim stack stiffness dominates the high speed regime.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

2002-10-29
2002-01-3182
Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
Technical Paper

An Evaluation of a Composite Model for Predicting Drop-Drop Collision Outcomes in Multidimensional Spray Computations

2002-03-04
2002-01-0943
The standard model for predicting the outcome of drop-drop collisions in sprays is one developed based on measurements in rain drops under atmospheric pressure conditions. This model includes the possible outcomes of grazing collisions and coalescence. Recent measurements with hydrocarbon drops and at higher pressure (up to 12 bar) indicate the possibility of additional outcomes: bounce, reflexive separation and drop shattering. The measurements also indicate that the Weber number range over which bounce occurs is dependent on the gas pressure. The probability of a drop-drop collision resulting in bounce increases with gas pressure. A composite model that includes all these outcomes as possibilities is employed to carry out computations in a constant volume chamber and in a Diesel engine. A sub-model for bounce that includes the pressure effects is also part of the composite model.
Technical Paper

Dependence of Fuel-Air Mixing Characteristics on Injection Timing in an Early-Injection Diesel Engine

2002-03-04
2002-01-0944
In recent years, there has been an interest in early-injection Diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to top-dead-center (TDC) compared to standard Diesel engines. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency. Diesel engines in which a homogeneous mixture is achieved close to TDC are known as Homogenous Charge Compression Ignition (HCCI) engines. PREmixed lean DIesel Combustion (PREDIC) engines in which the start of fuel injection is considerably advanced in comparison with that of the standard Diesel engine is an attempt to achieve a mode of operation close to HCCI. Earlier studies have shown that in a PREDIC engine, the fuel injection timing affects the mixture formation and hence influences combustion and pollutant formation.
Technical Paper

Experimental Modal Analysis of Automotive Exhaust Structures

2001-03-05
2001-01-0662
Experimental modal analysis (EMA) provides many parameters that are required in numerical modeling of dynamic and vibratory behavior of structures. This paper discusses EMA on an exhaust system of an off-road car. The exhaust structure is tested under three boundary conditions: free-free, supported with two elastomeric mounts, and mounted to the car. The free-free modal parameters are compared to finite element results. The two-mount tests are done with the mounts fixed to a rigid and heavy frame. The rigidity of the frame is verified experimentally. The on-car test is done with realistic boundary conditions, where the exhaust structure is fixed to the engine manifold as well as the two elastomeric mounts. The two-mount and the on-car tests result in highly complex mode shapes.
Technical Paper

Predictions of On-Engine Efficiency for the Radial Turbine of a Pulse Turbocharged Engine

2001-03-05
2001-01-1238
Modern pulse-turbocharged systems produce a turbine operating environment that is dominated by unsteady flow. Effective utilization of the unsteady exhaust gas energy content at the turbine inlet is critical to achieving optimum system efficiency. This work presents predictions for turbocharger unsteady performance from a model based on the Euler equations with source terms (EEST). This approach allows the time-accurate performance of the turbine to be determined, allowing comparisons of actual energy utilization and that estimated from steady flow performance maps.
Technical Paper

Swirl-Spray Interactions in a Diesel Engine

2001-03-05
2001-01-0996
Swirl in Diesel engines is known to be an important parameter that affects the mixing of the fuel jets, heat release, emissions, and overall engine performance. The changes may be brought about through interactions of the swirling flow field with the spray and through modifications of the flow field. The purpose of this paper is to investigate the interaction of the swirl with sprays in a Diesel engine through a computational study. A multi-dimensional model for flows, sprays, and combustion in engines is employed. Results from computations are reported with varying levels of swirl and initial turbulence in two typical Diesel engine geometries. It is shown that there is an optimal level of swirl for each geometry that results from a balance between increased jet surface area and, hence, mixing rates and utilization of air in the chamber.
X